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Abstract

By virtue of the introduction of new dependent variable and the separation of variables technique, the
transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder are transformed
to two Volterra integral equations of the second kind of about two functions with respect to time. These
integral equations can be solved successfully by means of the interpolation method. Then, the complete
solutions of displacements, stresses, electric potential, electric displacements, magnetic potential and
magnetic inductions are obtained. The present method is suitable for a magneto-electro-elastic hollow
cylinder with an arbitrary thickness subjected to arbitrary axisymmetric mechanical and electromagnetic
loads. Numerical results are finally presented.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis for dynamic problems of elastic bodies is an important and interesting research
field for engineers and scientists. Being of the common structural form, the hollow cylinders are
studied extensively. For pure elastic media, Cinelli [1] obtained the theoretical solutions of
see front matter r 2005 Elsevier Ltd. All rights reserved.
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dynamics of cylindrical and spherical shells. The dynamic responses of cylindrical and spherical
shells were studied by Chou and Koenig [2] and Rose et al. [3]. Wang and Gong [4] studied the
stress responses of isotropic cylindrical shells shocked at the inner surface. For piezoelectric
media, Adelman and Stavsky [5,6] studied the axisymmetric free vibrations of radially and axially
polarized piezoelectric ceramic hollow cylinders. Shul’ga et al. [7] and Paul and Venkatesan [8]
investigated the axisymmetric and three-dimensional electroelastic waves in a hollow piezoelectric
ceramic cylinder. The free vibrations of piezoelectric, empty and also compressible fluid filled
cylindrical shells for three-dimensional problems were studied by Ding et al. [9,10] in recent years.
There are also many works that have been done for non-homogeneous materials. Among them,

the special case where Young’s modulus has a power law dependence on the radial coordinate,
while the linear thermal expansion coefficient and Poisson’s ratio are constants, has been
considered by many scientists and engineers. For instance, Shaffer [11] obtained the general
solutions for a non-homogeneous orthotropic annular disk in plane stress subjected to uniform
pressures at the internal and external surfaces. The rotation problem of a non-homogeneous
orthotropic composite cylinder was considered by El-Naggar et al. [12]. Horgan and Chan [13]
investigated the pressured functionally graded isotropic hollow cylinder and disk problems. The
transient thermal stresses in a rotating non-homogeneous cylindrically orthotropic composite tube
and in a non-homogeneous spherically orthotropic elastic medium with spherical cavity were
studied by Abd-Alla et al. [14,15]. Tarn [16] obtained the exact solutions of functionally graded
anisotropic cylinders subjected to thermal and mechanical loads for steady-state problem. Ding et
al. [17] gave the solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric
plane strain dynamic thermoelastic problems. The torsional oscillations of a finite non-
homogeneous piezoelectric cylindrical shell were also investigated by Sarma [18]. In the above
studies, the variation of material density is often assumed to be the same as that of Young’s.
More recent advances are the intelligent composites made of piezoelectric/piezomagnetic

materials. This material not only has the ability of converting energy from one form to the other
(among magnetic, electric and mechanical energies), but also exhibits a magnetoelectric effect that
is not present in single-phase piezoelectric or piezomagnetic materials [19–21]. Most works for
magneto-electro-elastic composites are focused on the optimization of material properties [19–32],
especially the magneto-electro effect. For static problems, Wang and Shen [33] obtained the
general solution of three-dimensional problems in transversely isotropic magneto-electro-elastic
media and further derived the fundamental solution for dislocation and Green’s functions in half-
space. In addition, Wang and Shen [34] studied the two-dimensional problem of inclusions of
arbitrary shape in magneto-electro-elastic composites. Liu et al. [35] obtained the Green’s
functions for an infinite two-dimensional anisotropic magneto-electro-elastic medium containing
an elliptical cavity. Pan [36] derived the exact solutions for three-dimensional, anisotropic,
magneto-electro-elastic, simply supported and multilayered rectangular plates under static
loadings. For dynamic problems, the authors only found that Pan and Heyliger [37] studied the
free vibrations of simply supported and multilayered rectangular plates and derived the analytical
solutions. Ding et al. [38], Hou et al. [39] obtained the analytical solution for the axisymmetric
plane strain electroelastic dynamics of a non-homogeneous piezoelectric hollow cylinder. Hou and
Leung [40] further study the corresponding problem of magneto-electro-elastic hollow cylinders.
In this paper, the transient responses of a special non-homogeneous magneto-electro-elastic

hollow cylinder subjected to arbitrary mechanical and electromagnetic loads are searched. Firstly,
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a new dependant variable is introduced to rewrite the governing equations, the mechanical
boundary conditions and the initial conditions. Secondly, a special function is introduced to
transform the inhomogeneous mechanical boundary conditions into the homogeneous ones.
Thirdly, by virtue of the separation of variables technique, and utilizing the initial conditions and
electromagnetic boundary conditions, two second kind of Volterra integral equations about two
functions with respect to time are derived, which can be solved by means of the interpolation
method. Thus, the complete transient responses of the displacements, stresses, electric potential,
electric displacements, magnetic potential and magnetic inductions are obtained. At last, the
transient responses of the magneto-electro-elastic hollow cylinder with different non-homo-
geneous state are investigated for the sudden constant load and dynamic combined load,
respectively.
2. Basic equations

As suggested by Pan [37], when the body force, free charge density and current density are
absent, the basic equations for the dynamics of magneto-electro-elasticity can be expressed as

sij;j ¼ r
q2ui

qt2
; Dj;j ¼ 0; Bj;j ¼ 0, (1a2c)

sij ¼ Cijkl �̄kl � ekijEk � dkijHk, (2a)

Di ¼ eikl �̄kl þ �ikEk þ gikHk, (2b)

Bi ¼ dikl �̄kl þ gikEk þ mikHk, (2c)

�̄ij ¼
1
2
ðui;j þ uj;iÞ; Ei ¼ �F;i; Hi ¼ �C;i, (3a2c)

where sij, �̄ij, ui, Ei, Di, Hi and Bi are the components of stress, strain, displacement, electric field,
electric displacement, magnetic field and magnetic induction, respectively; F and C are electric
potential and magnetic potential, respectively; cijkl , ekij, dkij, �ij, gij and mij are elastic, piezoelectric,
piezomagnetic, dielectric, electromagnetic and magnetic coefficients, respectively; and r is the
mass density of the material.
Here, we consider orthotropic and radially polarized magneto-electro-elastic media with the

non-homogeneous case that all physical coefficients have a power law dependence on the radial
coordinate. Thus, the corresponding basic equations in a cylindrical coordinate system ðr;f; zÞ can
be obtained from Eqs. (1–3) as follows:

qsrr

qr
þ

qsrf

rqf
þ
qszr

qz
þ

srr � sff
r

¼ r
r

b

� �2N q2ur

qt2
,

qsrf

qr
þ

qsff
rqf
þ
qsfz

qz
þ

2qsrf

r
¼ r

r

b

� �2N q2uf
qt2

,

qszr

qr
þ

qsfz

rqf
þ

qszz

qz
þ

szr

r
¼ r

r

b

� �2N q2uz

qt2
, (4a)
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1

r

q
qr
ðrDrÞ þ

1

r

qDf

qf
þ

qDz

qz
¼ 0, (4b)

1

r

q
qr
ðrBrÞ þ

1

r

qBf

qf
þ

qBz

qz
¼ 0, (4c)

sff ¼ ðc11gff þ c12gzz þ c13grr � e31Er � d31HrÞðr=bÞ2N ,

szz ¼ ðc12gff þ c22gzz þ c23grr � e32Er � d32HrÞðr=bÞ2N ,

srr ¼ ðc13gff þ c23gzz þ c33grr � e33Er � d33HrÞðr=bÞ2N ,

szr ¼ ð2c44grz � e24Ez � d24HzÞðr=bÞ2N ,

srf ¼ ð2c55grf � e15Ef � d15HfÞðr=bÞ2N ,

sfz ¼ 2c66gfzðr=bÞ2N , ð5aÞ

Df ¼ ð2e15grf þ �11Ef þ g11HfÞðr=bÞ2N ,

Dz ¼ ð2e24grz þ �22Ez þ g22HzÞðr=bÞ2N ,

Dr ¼ ðe31gff þ e32gzz þ e33grr þ �33Er þ g33HrÞðr=bÞ2N , ð5bÞ

Bf ¼ ð2d15grf þ g11Ef þ m11HfÞðr=bÞ2N ,

Bz ¼ ð2d24grz þ g22Ez þ m22HzÞðr=bÞ2N ,

Br ¼ ðd31gff þ d32gzz þ d33grr þ g33Er þ m33HrÞðr=bÞ2N , ð5cÞ

grr ¼
qur

qr
; gff ¼

1

r

quf

qf
þ

ur

r
; gzz ¼

quz

qz
,

gzr ¼
1

2

quz

qr
þ

qur

qz

� �
; grf ¼

1

2

1

r

qur

qf
þ

quf

qr
�

uf

r

� �
,

gfz ¼
1

2

quf

qz
þ

1

r

quz

qf

� �
, ð6aÞ

Er ¼ �
qF
qr
; Ef ¼ �

1

r

qF
qf

; Ez ¼ �
qF
qz

, (6b)

Hr ¼ �
qC
qr
; Hf ¼ �

1

r

qC
qf

; Hz ¼ �
qC
qz

, (6c)

where b and N are determined constants. There are altogether 28 independent constants in
Eqs. (5), which include 9 elastic constants, 5 piezoelectric constants, 5 piezomagetic constants, 3
dielectric constants, 3 electromagnetic constants and 3 magnetic constants. When N ¼ 0,
Eqs. (4–6) degenerated to the basic equations of homogeneous media.
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3. Problem description

Consider an orthotropic, radially polarized and non-homogeneous magneto-electro-elastic
hollow cylinder with inner and outer radii of a and b (Fig. 1). There are axisymmetric mechanical
and electromagnetic loads acting on its boundary.
From the view point of three dimensions, this is an axisymmetric problem with ur ¼ urðr; z; tÞ,

uf ¼ 0, uz ¼ uzðr; z; tÞ, F ¼ Fðr; z; tÞ and C ¼ Cðr; z; tÞ. In this paper, a plane strain condition for
this problem is considered. Thus,

ur ¼ urðr; tÞ; uf ¼ uz ¼ 0; F ¼ Fðr; tÞ; C ¼ Cðr; tÞ. (7)

Substitution of Eq. (7) into Eq. (6) yields

grr ¼
qur

qr
¼ u0r; gff ¼

ur

r
; gzz ¼ gzr ¼ grf ¼ gfz ¼ 0, (8a)

Er ¼ �
qF
qr
¼ �F0; Ef ¼ Ez ¼ 0, (8b)

Hr ¼ �
qC
qr
¼ �C0; Hf ¼ Hz ¼ 0. (8c)

Substitution of Eq. (8) into Eq. (5) yields

sff ¼ c11
ur

r
þ c13

qur

qr
þ e31

qF
qr
þ d31

qC
qr

� �
r

b

� �2N

,

szz ¼ c12
ur

r
þ c23

qur

qr
þ e32

qF
qr
þ d32

qC
qr

� �
r

b

� �2N

,

srr ¼ c13
ur

r
þ c33

qur

qr
þ e33

qF
qr
þ d33

qC
qr

� �
r

b

� �2N

,

szr ¼ srf ¼ sfz ¼ 0, ð9aÞ

Dr ¼ e31
ur

r
þ e33

qur

qr
� �33

qF
qr
� g33

qC
qr

� �
r

b

� �2N

,

Df ¼ Dz ¼ 0, ð9bÞ
y

x

r

p2p1 

�1

�
�2

o a b

Fig. 1. Non-homogeneous magneto-electro-elastic hollow cylinder under coupling loads.



ARTICLE IN PRESS

P.F. Hou et al. / Journal of Sound and Vibration 291 (2006) 19–4724
Br ¼ d31
ur

r
þ d33

qur

qr
� g33

qF
qr
� m33

qC
qr

� �
r

b

� �2N

,

Bf ¼ Bz ¼ 0. ð9cÞ

Then, by virtue of Eq. (9), Eq. (4) can be simplified as

qsrr

qr
þ
srr � sff

r
¼ r

r

b

� �2N q2ur

qt2
, (10a)

1

r

q
qr
ðrDrÞ ¼ 0;

1

r

q
qr
ðrBrÞ ¼ 0. (10b,c)

The non-dimensional parameters, coordinates and variables are introduced as

ci ¼
c1i

c33
; c4 ¼

c23

c33
; ei ¼

e3iffiffiffiffiffiffiffiffiffiffiffiffi
c33�33
p ; di ¼

d3iffiffiffiffiffiffiffiffiffiffiffiffi
c33m33
p ði ¼ 1; 2; 3Þ,

g ¼
g33ffiffiffiffiffiffiffiffiffiffiffiffi
�33m33
p ; c ¼

ffiffiffiffiffiffi
c33

r

r
; s ¼

a

b
; x ¼

r

b
; t ¼

ct

b
,

u ¼
ur

b
; sr ¼

srr

c33
; sf ¼

sff
c33

; sz ¼
szz

c33
,

j ¼
F
b

ffiffiffiffiffiffi
�33
c33

r
; D ¼

Drffiffiffiffiffiffiffiffiffiffiffiffi
c33�33
p ; c ¼

C
b

ffiffiffiffiffiffiffi
m33
c33

r
; B ¼

Brffiffiffiffiffiffiffiffiffiffiffiffi
c33m33
p . ð11Þ

Thus, we have

u0r ¼
qur

qr
¼

qu

qx
¼ u0;

ur

r
¼

u

x
,

F0 ¼
qF
qr
¼

ffiffiffiffiffiffi
c33

�33

r
qj
qx
¼

ffiffiffiffiffiffi
c33

�33

r
j0,

C0 ¼
qC
qr
¼

ffiffiffiffiffiffiffi
c33

m33

r
qc
qx
¼

ffiffiffiffiffiffiffi
c33

m33

r
c0. ð12Þ

Then, based on Eqs. (11,12), Eqs. (9,10) can be translated into following non-dimensional forms:

sf ¼ c1
u

x
þ c3

qu

qx
þ e1

qj
qx
þ d1

qc
qx

� �
x2N ,

sz ¼ c2
u

x
þ c4

qu

qx
þ e2

qj
qx
þ d2

qc
qx

� �
x2N ,

sr ¼ c3
u

x
þ

qu

qx
þ e3

qj
qx
þ d3

qc
qx

� �
x2N , ð13aÞ

D ¼ e1
u

x
þ e3

qu

qx
�

qj
qx
� g

qc
qx

� �
x2N , (13b)

B ¼ d1
u

x
þ d3

qu

qx
� g

qj
qx
�
qc
qx

� �
x2N , (13c)
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qsr

qx
þ

sr � sf
x
¼ x2N q2u

qt2
, (14a)

q
qx
ðxDÞ ¼ 0;

q
qx
ðxBÞ ¼ 0. (14b,c)

The corresponding non-dimensional boundary conditions and initial conditions are

srð1; tÞ ¼ p1ðtÞ; srðs; tÞ ¼ p2ðtÞ, (15a)

jð1; tÞ ¼ j1ðtÞ; jðs; tÞ ¼ j2ðtÞ, (15b)

cð1; tÞ ¼ c1ðtÞ; cðs; tÞ ¼ c2ðtÞ, (15c)

uðx; 0Þ ¼ g1ðxÞ; _uðx; 0Þ ¼
quðx; tÞ

qt

� �
t¼0
¼ g2ðxÞ. (16)

Every dot over a variable in this paper denotes a partial derivative with respect to initial
conditions time t.
Thus, the complete governing equations for this problem are obtained and consisted of Eqs.

(13–16).
4. Solving technology

4.1. Transform for the governing equations

At first, Eqs. (13b,c) are rewritten as

qj
qx
¼ a3

u

x
þ b3

qu

qx
�

d

x2N
ðD� gBÞ, (17a)

qc
qx
¼ a4

u

x
þ b4

qu

qx
�

d

x2N
ðB� gDÞ. (17b)

Then, substituting Eq. (17) into Eq. (13a) yields

sf ¼ a1
u

x
þ a2

qu

qx

� �
x2N
� a3D� a4B, (18a)

sz ¼ g1
u

x
þ g2

qu

qx

� �
x2N
� g3D� g4B, (18b)

sr ¼ b1
u

x
þ b2

qu

qx

� �
x2N
� b3D� b4B, (18c)

where

a1 ¼ c1 þ e1a3 þ d1a4; a2 ¼ c3 þ e1b3 þ d1b4; a3 ¼ dðe1 � gd1Þ; a4 ¼ dðd1 � ge1Þ,
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b1 ¼ a2; b2 ¼ 1þ e3b3 þ d3b4; b3 ¼ dðe3 � gd3Þ; b4 ¼ dðd3 � ge3Þ; d ¼ 1=ð1� g2Þ,

g1 ¼ c2 þ e2a3 þ d2a4; g2 ¼ c4 þ e2b3 þ d2b4; g3 ¼ dðe2 � gd2Þ; g4 ¼ dðd2 � ge2Þ. ð19Þ

Based on Eqs. (14b,c), D and B can be derived as

Dðx; tÞ ¼
1

x
dðtÞ; Bðx; tÞ ¼

1

x
bðtÞ, (20a,b)

where dðtÞ and bðtÞ are undetermined functions with respect to non-dimensional time t.
Substituting Eqs. (18a,c) into Eq. (14a) and utilizing Eq. (20) yield

q2u

qx2
þ ð2N þ 1Þ

1

x
qu

qx
� l

u

x2
�

1

b2

q2u
qt2
¼ �

a3
b2

dðtÞ

x2ðNþ1Þ
�

a4
b2

bðtÞ

x2ðNþ1Þ
, (21)

where

l ¼
a1 � 2Nb1

b2
. (22)

Secondly, a new dependent variable vðx; tÞ is introduced as

vðx; tÞ ¼ xNuðx; tÞ. (23)

Thus, Eq. (21) can be rewritten as

q2v

qx2
þ

1

x
qv

qx
� n2 v

x2
�

1

b2

q2v
qt2
¼ �

a3
b2

dðtÞ

xNþ2
�

a4
b2

bðtÞ

xNþ2
, (24)

where

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ l

p
. (25)

By virtue of Eqs. (18c,20,23), mechanical boundary condition (15a) can be rewritten into
following forms:

b2
qv

qx
þ b5

v

x

� �
x¼1
¼ P1ðtÞ, (26a)

b2
qv

qx
þ b5

v

x

� �
x¼s

¼ P2ðtÞ, (26b)

where

P1ðtÞ ¼ p1ðtÞ þ b3dðtÞ þ b4bðtÞ,

P2ðtÞ ¼
1

sN
p2ðtÞ þ

b3
s

dðtÞ þ
b4
s

bðtÞ
� �

,

b5 ¼ b1 �Nb2. ð27Þ

Thirdly, the inhomogeneous boundary conditions (26) will be further transformed into the
homogeneous ones by taking

vðx; tÞ ¼ wðx; tÞ þ A0ðx� sÞmP1ðtÞ þ B0ðx� 1ÞmP2ðtÞ, (28)
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where wðx; tÞ is undetermined function and

A0 ¼
1

b2mð1� sÞm�1 þ b5ð1� sÞm
; B0 ¼

1

b2mðs� 1Þm�1 þ b5s�1ðs� 1Þm
. (29)

Generally, one can take m ¼ 2 if both the denominators of A0 and B0 are non-zero; otherwise,
m ¼ 3; 4; 5; . . . can be adopted.
Substituting Eq. (28) into Eqs. (24,26) yields

q2w

qx2
þ

1

x
qw

qx
� n2 w

x2
�

1

b2

q2w
qt2
¼ Qðx; tÞ, (30)

b2
qw

qx
þ b5

w

x

� �
x¼s and x¼1

¼ 0, (31)

where

Qðx; tÞ ¼ Fðx; tÞ þ I1ðxÞdðtÞ þ I2ðxÞ €dðtÞ þ L1ðxÞbðtÞ þ L2ðxÞ €bðtÞ (32)

and

F ðx; tÞ ¼ � A0 f ðx; sÞp1ðtÞ �
B0

sN
f ðx; 1Þp2ðtÞ þ

A0

b2
ðx� sÞm €p1ðtÞ þ

B0

b2sN
ðx� 1Þm €p2ðtÞ,

I1ðxÞ ¼ �
a3
b2

1

xNþ2
� b3 A0f ðx; sÞ þ

B0

sNþ1
f ðx; 1Þ

� �
,

I2ðxÞ ¼
b3
b2

A0ðx� sÞm þ
B0

sNþ1
ðx� 1Þm

� �
,

L1ðxÞ ¼ �
a4
b2

1

xNþ2
� b4 A0f ðx; sÞ þ

B0

sNþ1
f ðx; 1Þ

� �
,

L2ðxÞ ¼
b4
b2

A0ðx� sÞm þ
B0

sNþ1
ðx� 1Þm

� �
,

f ðx; ZÞ ¼ mðm� 1Þðx� ZÞm�2 þm
ðx� ZÞm�1

x
� n2 ðx� ZÞm

x2
. ð33Þ

Based on Eqs. (23,28), initial condition (16) can be transformed into

wðx; 0Þ ¼ h1ðxÞ þ h2ðxÞdð0Þ þ h3ðxÞbð0Þ,

_wðx; 0Þ ¼ h4ðxÞ þ h2ðxÞ _dð0Þ þ h3ðxÞ _bð0Þ, (34)

where

h1ðxÞ ¼ xNg1ðxÞ � A0ðx� sÞmp1ð0Þ �
B0

sN
ðx� 1Þmp2ð0Þ,

h2ðxÞ ¼ �b3 A0ðx� sÞm þ
B0

sNþ1
ðx� 1Þm

� �
,
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h3ðxÞ ¼ �b4 A0ðx� sÞm þ
B0

sNþ1
ðx� 1Þm

� �
,

h4ðxÞ ¼ xNg2ðxÞ � A0ðx� sÞm _p1ð0Þ �
B0

sN
ðx� 1Þm _p2ð0Þ. (35)

Thus, some governing equations are transformed into Eqs. (30,31,34).
4.2. Solution

By virtue of the method of variable separation, the solution of Eq. (30) can be assumed in the
following form:

wðx; tÞ ¼
X1
i¼1

RiðxÞTiðtÞ, (36)

where TiðtÞ is undetermined functions of t and

RiðxÞ ¼ Y ðn; ki; 1ÞJnðkixÞ � Jðn; ki; 1ÞY nðkixÞ, (37)

here JnðkixÞ and Y nðkixÞ are, respectively, the first and second kind of Bessel functions with order
of n. ki is an incremental series of positive roots of the following equation:

Jðn; ki; sÞY ðn; ki; 1Þ � Jðn; ki; 1ÞY ðn; ki; sÞ ¼ 0, (38)

where

Jðn; ki; xÞ ¼
ki

2n
½ðb5 þ nb2ÞJn�1ðkixÞ þ ðb5 � nb2ÞJnþ1ðkixÞ�,

Y ðn; ki; xÞ ¼
ki

2n
½ðb5 þ nb2ÞY n�1ðkixÞ þ ðb5 � nb2ÞY nþ1ðkixÞ�, (39)

and n, b2, b5 are constants defined in Eqs. (19,25,27).
Thus, we can find that RiðxÞ satisfies

b2
dR

dx
þ b5

R

x

� �
x¼s and x¼1

¼ 0. (40)

So wðx; tÞ expressed in Eq. (36) satisfies the homogeneous boundary conditions (31).
In addition, by virtue of the orthogonal property of Bessel functions, it is easy to find that RiðxÞ

also satisfies

1

x
d

dx
x
dRi

dx

� �
þ k2

i �
n2

x2

� �
Ri ¼ 0, (41)

Z 1

s

xRiRj dx ¼ dijNi, (42)
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where dij is the Kronecker delta, and

Ni ¼
1

2k2
i

x2
dRi

dx

� �2

þ ðk2
i x

2
� n2ÞR2

i ðxÞ

" #x¼1
x¼s

. (43)

Substituting solution (36) into Eq. (30) and using Eq. (41) yield

X1
i¼1

Ri k2
i T iðtÞ þ

1

b2
€TiðtÞ

� �
¼ �Qðx; tÞ. (44)

Then, by virtue of the orthogonal property (42), the equation to determine TiðtÞ can be derived
from Eq. (44) as follows:

€TiðtÞ þ o2
i T iðtÞ ¼ qiðtÞ, (45)

where

o2
i ¼ b2k

2
i ; qiðtÞ ¼ �

b2
Ni

Z 1

s

Qðx; tÞRixdx. (46)

The solution of Eq. (45) is

TiðtÞ ¼ Tið0Þ cosoitþ
1

oi

_Tið0Þ sinoitþ
1

oi

Z t

0

qiðZÞ sinoiðt� ZÞdZ, (47)

where Tið0Þ and _Tið0Þ can be determined by substituting solution (36) into initial conditions (34)
and with the aid of orthogonal property (42) as

Tið0Þ ¼ A1i þ A2idð0Þ þ A3ibð0Þ,

_Tið0Þ ¼ A4i þ A2i
_dð0Þ þ A3i

_bð0Þ (48)

and

Aji ¼
1

Ni

Z 1

s

hjðxÞRixdx ðj ¼ 1; 2; 3; 4; i ¼ 1; 2; 3; . . .Þ. (49)

It can be seen that the solution is still not obtained for the undetermined functions dðtÞ
and bðtÞ in expression (32) for Qðx; tÞ, which is used in Eqs. (46,47) to determine qiðtÞ
and TiðtÞ. For this object, the electromagnetic boundary conditions (15b,c) will be used as
follows.
At first, by virtue of Eqs. (23,28,36), the displacement uðx; tÞ can be expressed as

uðx; tÞ ¼
1

xN

X1
i¼1

RiðxÞTiðtÞ þ A0ðx� sÞmP1ðtÞ þ B0ðx� 1ÞmP2ðtÞ

" #
. (50)
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Substituting Eq. (20) into Eq. (17) and integrating the result using electromagnetic boundary
conditions (15b,c) yield

jðx; tÞ ¼ a3

Z x

s

1

Z
uðZ; tÞdZþ b3½uðx; tÞ � uðs; tÞ� þ j2ðtÞ

þ

�d ln
x
s

� �
½dðtÞ � gbðtÞ�; N ¼ 0;

d
2N

1

x2N
�

1

s2N

� �
½dðtÞ � gbðtÞ�; Na0;

8>>>><
>>>>:

ð51aÞ

cðx; tÞ ¼ a4

Z x

s

1

Z
uðZ; tÞdZþ b4½uðx; tÞ � uðs; tÞ� þ c2ðtÞ

þ

�d ln
x
s

� �
½bðtÞ � gdðtÞ�; N ¼ 0;

d
2N

1

x2N
�

1

s2N

� �
½bðtÞ � gdðtÞ�; Na0:

8>>>><
>>>>:

ð51bÞ

Substitution of Eq. (50) into Eq. (51) and subsequently into the electromagnetic boundary
conditions (15b,c) yields

j1ðtÞ ¼ a3
X1
i¼1

TiðtÞ
Z 1

s

1

ZNþ1
RiðZÞdZþ A0P1ðtÞ

Z 1

s

1

ZNþ1
ðZ� sÞm dZ

"

þB0P2ðtÞ
Z 1

s

1

ZNþ1
ðZ� 1Þm dZ

#

þ b3
X1
i¼1

Rið1ÞTiðtÞ þ A0ð1� sÞmP1ðtÞ

" #
þ j2ðtÞ � b3uðs; tÞ

þ

d ln s½dðtÞ � gbðtÞ�; N ¼ 0;

d
2N

1�
1

s2N

� �
½dðtÞ � gbðtÞ�; Na0;

8><
>: ð52aÞ

c1ðtÞ ¼ a4
X1
i¼1

TiðtÞ
Z 1

s

1

ZNþ1
RiðZÞdZþ A0P1ðtÞ

Z 1

s

1

ZNþ1
ðZ� sÞm dZ

"

þB0P2ðtÞ
Z 1

s

1

ZNþ1
ðZ� 1Þm dZ

#

þ b4
X1
i¼1

Rið1ÞTiðtÞ þ A0ð1� sÞmP1ðtÞ

" #
þ c2ðtÞ � b4uðs; tÞ
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þ

d ln s½bðtÞ � gdðtÞ�; N ¼ 0;

d
2N

1�
1

s2N

� �
½bðtÞ � gdðtÞ�; Na0:

8><
>: ð52bÞ

Moving the positions of j2ðtÞ and c2ðtÞ from right hand side to left hand side of Eq. (52) yields

j1ðtÞ � j2ðtÞ ¼
X1
i¼1

AiTiðtÞ þ G1P1ðtÞ þ G2P2ðtÞ

þ

d ln s½dðtÞ � gbðtÞ�; N ¼ 0;

d
2N

1�
1

s2N

� �
½dðtÞ � gbðtÞ�; Na0;

8><
>: ð53aÞ

c1ðtÞ � c2ðtÞ ¼
X1
i¼1

BiTiðtÞ þH1P1ðtÞ þH2P2ðtÞ

þ

d ln s½bðtÞ � gdðtÞ�; N ¼ 0;

d
2N

1�
1

s2N

� �
½bðtÞ � gdðtÞ�; Na0;

8><
>: ð53bÞ

where G1, G2, Ai, H1, H2, Bi are constants defined in (A.1,A.2).
Substitution of Eq. (32) into the second equation of Eq. (46) yields

qiðtÞ ¼ X iðtÞ þ Y 1idðtÞ þ Y 2i
€dðtÞ þ Z1ibðtÞ þ Z2i

€bðtÞ, (54)

where Y 1i, Y 2i, Z1i, Z2i are constants defined in Eq. (A.3), and

X iðtÞ ¼ �
b2
Ni

Z 1

s

F ðx; tÞRixdx. (55)

Substitution of Eqs. (48,54) into Eq. (47) and the result of TiðtÞ and P1ðtÞ, P2ðtÞ in Eq. (27) into
Eq. (53), using the integration-by-parts formula, yields

j1ðtÞ � j2ðtÞ ¼ U1ðtÞ þ Vd1dðtÞ þ Vb1bðtÞ þ
X1
i¼1

W d1i

Z t

0

dðZÞ sinoiðt� ZÞdZ

þ
X1
i¼1

W b1i

Z t

0

bðZÞ sinoiðt� ZÞdZ, ð56aÞ

c1ðtÞ � c2ðtÞ ¼ U2ðtÞ þ Vd2dðtÞ þ Vb2bðtÞ þ
X1
i¼1

W d2i

Z t

0

dðZÞ sinoiðt� ZÞdZ

þ
X1
i¼1

W b2i

Z t

0

bðZÞ sinoiðt� ZÞdZ, ð56bÞ
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where Vd1, Vb1, W d1i, W b1i, Vd2, Vb2, W d2i, W b2i are constants defined in Eqs. (A.4) and (A.5),
and

U1ðtÞ ¼ G1p1ðtÞ þ
G2

sN
p2ðtÞ þ

X1
i¼1

Ai ½A1i þ ðA2i � Y 2iÞdð0Þ þ ðA3i � Z2iÞbð0Þ� cosoit
�

þ
1

oi

½A4i þ ðA2i � Y 2iÞ
_dð0Þ þ ðA3i � Z2iÞ

_bð0Þ� sinoit

þ
1

oi

Z t

0

X iðZÞ sinoiðt� ZÞdZ
	
, ð57aÞ

U2ðtÞ ¼ H1p1ðtÞ þ
H2

sN
p2ðtÞ þ

X1
i¼1

Bi ½A1i þ ðA2i � Y 2iÞdð0Þ þ ðA3i � Z2iÞbð0Þ� cosoit
�

þ
1

oi

½A4i þ ðA2i � Y 2iÞ
_dð0Þ þ ðA3i � Z2iÞ

_bð0Þ� sinoit

þ
1

oi

Z t

0

X iðZÞ sinoiðt� ZÞdZ
	
. ð57bÞ

Let t ¼ 0, one can obtain from Eq. (56)

a11dð0Þ þ a12bð0Þ ¼ b1; a21dð0Þ þ a22bð0Þ ¼ b2, (58)

where aij, bi ði; j ¼ 1; 2Þ are constants defined in (A.6).
From Eq. (56), one can derive

_j1ðtÞ � _j2ðtÞ ¼ _U1ðtÞ þ Vd1
_dðtÞ þ Vb1

_bðtÞ þ
X1
i¼1

oiW d1i

Z t

0

dðZÞ cosoiðt� ZÞdZ

þ
X1
i¼1

oiW b1i

Z t

0

bðZÞ cosoiðt� ZÞdZ, ð59aÞ

_c1ðtÞ � _c2ðtÞ ¼ _U2ðtÞ þ Vd2
_dðtÞ þ Vb2

_bðtÞ þ
X1
i¼1

oiW d2i

Z t

0

dðZÞ cosoiðt� ZÞdZ

þ
X1
i¼1

oiW b2i

Z t

0

bðZÞ cosoiðt� ZÞdZ. ð59bÞ

Similarly, substituting t ¼ 0 into Eq. (59) yields

a11 _dð0Þ þ a12 _bð0Þ ¼ d1; a21
_dð0Þ þ a22

_bð0Þ ¼ d2, (60)

where aij, di ði; j ¼ 1; 2Þ are constants defined in Eq. (A.6). Thus, dð0Þ, bð0Þ, _dð0Þ and _bð0Þ can be
obtained from Eqs. (58,60).
Substituting the obtained dð0Þ, _dð0Þ, bð0Þ and _bð0Þ into Eqs. (57), one can see that U1ðtÞ and

U2ðtÞ are two determined functions, so that Eq. (56) becomes two Volterra integral equations of
the second kind [41]. It is known that they have unique solution at all times. For some cases, the
analytical solution can be obtained. While for general cases, numerical methods are needed. In
this paper, the recursion formula are constructed by making use of the linear interpolation
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function. In practice, the numerical result can be obtained efficiently by the present method. In
order to show the method of solving the integral equation, the time interval ½0; t� is divided into n
subintervals. The discrete time points are t0 ¼ 0; t1; t2; . . . ; tn. Then the interpolation function at
the time interval ½tj�1; tj� is

dðtÞ ¼ zjðtÞdðtj�1Þ þ ZjðtÞdðtjÞ; bðtÞ ¼ zjðtÞbðtj�1Þ þ ZjðtÞbðtjÞ ð j ¼ 1; 2; . . . ; nÞ, (61)

where

zjðtÞ ¼
t� tj

tj�1 � tj

; ZjðtÞ ¼
t� tj�1

tj � tj�1
ð j ¼ 1; 2; . . . ; nÞ. (62)

Substituting Eq. (61) into Eq. (56) yields

j1ðtjÞ � j2ðtjÞ ¼ U1ðtjÞ þ Vd1dðtjÞ þ Vb1bðtjÞ þ
X1
i¼1

W d1i

Xj

k¼1

½Kijkdðtk�1Þ þMijkdðtkÞ�

þ
X1
i¼1

W b1i

Xj

k¼1

½Kijkbðtk�1Þ þMijkbðtkÞ�, ð63aÞ

c1ðtjÞ � c2ðtjÞ ¼ U2ðtjÞ þ Vd2dðtjÞ þ Vb2bðtjÞ þ
X1
i¼1

W d2i

Xj

k¼1

½Kijkdðtk�1Þ þMijkdðtkÞ�

þ
X1
i¼1

W b2i

Xj

k¼1

½Kijkbðtk�1Þ þMijkbðtkÞ�, ð63bÞ

where

Kijk ¼
R tk

tk�1
zkðpÞ sinoiðtj � pÞdp

Mijk ¼
R tk

tk�1
ZkðpÞ sinoiðtj � pÞdp

ðk ¼ 1; 2; . . . ; j; j ¼ 1; 2; . . . ; nÞ. (64)

Then one can derive the following formula from Eq. (63):

e11dðtjÞ þ e12bðtjÞ ¼ f 1; e21dðtjÞ þ e22bðtjÞ ¼ f 2 ð j ¼ 1; 2; . . . ; nÞ, (65)

where

e11 ¼ Vd1 þ
X1
i¼1

W d1iMijj; e12 ¼ Vb1 þ
X1
i¼1

W b1iMijj,

e21 ¼ Vd2 þ
X1
i¼1

W d2iMijj; e22 ¼ Vb2 þ
X1
i¼1

W b2iMijj,

f 1 ¼ j1ðtjÞ � j2ðtjÞ �U1ðtjÞ �
X1
i¼1

W d1i Kijjdðtj�1Þ þ
Xj�1
k¼1

½Kijkdðtk�1Þ þMijkdðtkÞ�

 !

�
X1
i¼1

W b1i Kijjbðtj�1Þ þ
Xj�1
k¼1

½Kijkbðtk�1Þ þMijkbðtkÞ�

 !
,
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f 2 ¼ c1ðtjÞ � c2ðtjÞ �U2ðtjÞ �
X1
i¼1

W d2i Kijjdðtj�1Þ þ
Xj�1
k¼1

½Kijkdðtk�1Þ þMijkdðtkÞ�

 !

�
X1
i¼1

W b2i Kijjbðtj�1Þ þ
Xj�1
k¼1

½Kijkbðtk�1Þ þMijkbðtkÞ�

 !
. ð66Þ

Thus, once dð0Þ and bð0Þ are obtained by Eq. (58), one can obtain dðtjÞ and bðtjÞ ð j ¼ 1; 2; . . . ; nÞ
step by step by solving Eqs. (65,66). Thus dðtÞ and bðtÞ are then determined. Based on these, the
complete transient responses including uðx; tÞ, fðx; tÞ, cðx; tÞ, Dðx; tÞ, Bðx; tÞ, srðx; tÞ, sfðx; tÞ and
szðx; tÞ can be finally determined.
It is noted that only one side of inner and outer surfaces can be prescribed by electric

displacement and magnetic induction, the other side must be prescribed by electric potential and
magnetic potential. For example, the inner surface ðx ¼ sÞ are prescribed by

Dðs; tÞ ¼ D2ðtÞ; Bðs; tÞ ¼ B2ðtÞ. (67)

Substituting Eq. (20) into Eq. (67), one can obtain

dðtÞ ¼ sD2ðtÞ; bðtÞ ¼ sB2ðtÞ. (68)

Substitution of Eq. (68) into Eq. (20) yields

Dðx; tÞ ¼
s

x
D2ðtÞ; Bðx; tÞ ¼

s

x
D2ðtÞ. (69)

Thus the electric displacement and magnetic induction on the outer surface have been determined
by Eq. (69) as

Dð1; tÞ ¼ sD2ðtÞ; Bð1; tÞ ¼ sD2ðtÞ. (70)

So the outer side must be prescribed by electric potential and magnetic potential as Eq. (15).
In this case, the displacement solution had been obtained until Eq. (49), and the procedure of

solving the Volterra integral equation to determine dðtÞ and bðtÞ, which had been obtained by
Eq. (68), is avoided. In addition, Eq. (51), which is used to determine the solutions of electric
potential and magnetic potential, contains j2ðtÞ and c2ðtÞ, so if the boundary conditions of
electric potential j1ðtÞ and magnetic potential c1ðtÞ are prescribed in outer surface, Eq. (53)
should be used to obtain j2ðtÞ and c2ðtÞ.
All above solutions can be degenerated into corresponding non-homogeneous piezoelectric,

piezomagnetic and purely elastic solutions as its special cases. For purely elastic problem (with the
coupling physical coefficients ekij, dkij and gij in Eq. (2) being set to zero), the solution had been
obtained until Eq. (49), because the undetermined functions dðtÞ and bðtÞ in expression (32) of
Qðx; tÞ vanish. For piezoelectric or piezomagnetic problem (with the coupling of physical
constants dkij, gij and ekij, gij in Eq. (2) being set to zero, respectively), one of dðtÞ and bðtÞ
vanishes and the solutions can be obtained similarly by solving one Volterra integral equation
instead of two. These can be found in Ref. [38] for homogeneous piezoelectric hollow cylinder and
in Ref. [39] for non-homogeneous hollow cylinder. In addition, the transient response of
homogeneous magneto-electro-elastic hollow cylinder [40] can be easily obtained by let non-
homogeneous parameter N ¼ 0. All these conclusions had been proved out by numerical results.
For example, when N ¼ 0, the transient responses at x ¼ 0:75 (the middle surface) in Figs. 2 and 5
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of next section agree with corresponding transient responses at x ¼ 0:75 in Figs. 3 and 6 of
Ref. [40].
5. Numerical results and discussions

Having derived the exact solutions, some numerical results will be presented for the transient
responses of a non-homogeneous magneto-electro-elastic hollow cylinder under zero initial
conditions g1ðxÞ ¼ g2ðxÞ ¼ 0 and subjected to following loads.
(a) Sudden constant pressure load:

p1 ¼ 0; p2ðtÞ ¼ �s0HðtÞ; j1ðtÞ ¼ j2ðtÞ ¼ 0; c1ðtÞ ¼ c2ðtÞ ¼ 0. (71)

(b) Dynamic combined loads:

p1ðtÞ ¼ s0 sinðtÞ; p2ðtÞ ¼ s0 sinð2tÞ,

j1ðtÞ ¼ j0 cosð3tÞ; j2ðtÞ ¼ j0 sinð4tÞ,

c1ðtÞ ¼ c0 sinð5tÞ; c2ðtÞ ¼ c0 cosð6tÞ, (72)

where s0, j0, c0 are prescribed constant stress, constant electric potential and constant magnetic
potential and s0 ¼ 1:0, j0 ¼ 1:0, c0 ¼ 1:0 are adopted. In addition, HðtÞ is the Heaviside
function.
In this course, s ¼ 0:5, m ¼ 2, tn ¼ t300 ¼ 12 and the first 40 terms in Eq. (36) are taken. The

physical constants of the magneto-electro-elastic material are listed in Table 1.

5.1. Transient responses in non-homogeneous magneto-electro-elastic hollow cylinders under sudden
constant pressure load

In cases of N ¼ �1, 0 and 1, the transient responses of all dimensional components at x ¼ 0:75
(the middle surface) in non-homogeneous magneto-electro-elastic hollow cylinder subjected to
loads (71) are compared in Fig. 2. In addition, the distributions of all dimensional components
along x at two determined time t ¼ 4:0 and 8.0 are plotted in Fig. 3.
Table 1

Physical constants of magneto-electro-elastic hollow cylinder [24]

c11 c12 c13 c33 c44 g11
2:86� 1011 1:73� 1011 1:70� 1011 2:695� 1011 4:53� 1010 5:0� 10�12

e15 e31 e33 �11 �33 g33
11.6 �4.4 18.6 8:0� 10�11 9:3� 10�11 3:0� 10�12

d15 d31 d33 m11 m33
550 580.3 699.7 �5:90� 10�4 1:57� 10�4

Units: elastic constants: Nm�2; piezoelectric constants: Cm�2; piezomagnetic constants: NA�1 m�1; dielectric

constants: C2 N�1 m�2; electromagnetic constants: N sV�1 C�1; magnetic constants: N s2 C�2.
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From Figs. 2 and 3, some information can be obtained as follows:
(1)
Fig.

pres
The peak values of all components increase quickly with the increase of N (Fig. 2).

(2)
 The peak value of sf is larger than those of sr and sz, and becomes the primary stress in any

case of N (Figs. 2b–d).
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2. Transient responses of all non-dimensional components at x ¼ 0:75 (the middle surface) for sudden constant

sure.
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(3)
 The transient responses of stress sr and electric potential j change intensely along
with t (Figs. 2b and e), i.e. they are sensitive to loadings and can be used as a
suitable feedback in smart system. So we can regard them as the smartest one of all
components.
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(4)
 The distribution of stress sr changes dramatically along x and show very complicated
characteristics compared to those of other components (Fig. 3b).
5.2. Transient responses in non-homogeneous magneto-electro-elastic hollow cylinders under

dynamic combined loads

In cases of N ¼ �1, 0 and 1, the parallel numerical results for dynamic combined loads (72) are
plotted in Figs. 4 and 5.
From Figs. 4 and 5, some information can be obtained as follows:
(1)
 The relation between the peak values of all components with N shows some new
characteristics. Except u, which is same as that for constant pressure and increase with the
increase of N (Fig. 4a), sr, sf, sz, D and B are contrary to those for constant pressure and
decrease with the increase of N (Figs. 4b–h). In addition, the peak values of j and c show an
undetermined relation with N (Figs. 4e and g).
(2)
 Contrary to constant pressure, sf is not still the primary stress, it has the same importance
with sr and sz for their same level of peak values (Figs. 4b–d).
(3)
 The transient responses of stress sr for combined dynamic loads is still the smartest
one of all components (Fig. 4b), while the electric potential j is not in smart form (Figs. 4b
and e);
(4)
 Similar to constant pressure, the distribution of stress sr along x still shows complicated
characteristics than those of other components (Fig. 5b).
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of N ¼ 1.
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In addition, the calculation also shows us some information as follows:
(1)
 The numerical results on the boundaries of x ¼ 0:5 and 1 satisfy the prescribed boundary
conditions and the precision level is up to 10�5 at least. This also can be seen from Figs. 3b,e,g
and 5b,e,g.
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(2)
 By using linear interpolation functions or high-order interpolation functions, the
accurate results can be obtained effectively. It is noted here that the recursion
formula becomes very simple when linear interpolation functions are used. Particularly, the
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simplest recursion formula will be obtained when equal time steps are used. Based on many
kinds of tests, we conclude that the satisfactory numerical results can be obtained
when Dtp0:05.
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(3)
 Calculations for the sudden constant electric potential and magnetic potential on the inner
surface of non-homogeneous magneto-electro-elastic cylinder show that they have a similar
form of transient responses with those for sudden constant pressure.
6. Conclusions

In this paper, we have derived an analytical solution for the transient responses of a special non-
homogeneous magneto-electro-elastic hollow cylinder with arbitrary thickness subjected to
arbitrary mechanical and electromagnetic loads. The present solution can be degenerated to those
of corresponding purely elastic, piezomagnetic and piezoelectric problems as its special cases.
They can not only provide benchmarks for numerical methods, such as the finite element and
boundary element methods, but also can offer a simple and accurate tool for the prediction,
identification and study of the complex dynamic characteristics of coupling mechanical and
electromagnetic fields in the working magneto-electro-elastic components, such as sensors and
actuators in active structures.
In three non-homogeneous cases, typical numerical examples are presented for

magneto-electro-elastic hollow cylinders, which are subjected to sudden constant pressure
load and dynamic combined loads, respectively. It can be concluded that the transient
responses of coupled fields show complicated characteristics, including the relations
between the peak values of all components with non-homogeneous parameter N, the
determination of the smartest component and primary stress etc. All these should be determined
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by calculation and analysis, which are taken according to the corresponding loads and physical
properties.
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Appendix A. Definition of constants

G1 ¼ A0 a3

Z 1

s

1

ZNþ1
ðZ� sÞm dZþ b3ð1� sÞm

� �
, (A.1a)

G2 ¼ B0 a3

Z 1

s

1

ZNþ1
ðZ� 1Þm dZ�

b3
sN
ðs� 1Þm

� �
, (A.1b)

Ai ¼ a3

Z 1

s

1

ZNþ1
RiðZÞdZþ b3 Rið1Þ �

1

sN
RiðsÞ

� �
ði ¼ 1; 2; 3; . . .Þ, (A.1c)

H1 ¼ A0 a4

Z 1

s

1

ZNþ1
ðZ� sÞm dZþ b4ð1� sÞm

� �
, (A.2a)

H2 ¼ B0 a4

Z 1

s

1

ZNþ1
ðZ� 1Þm dZ�

b4
sN
ðs� 1Þm

� �
, (A.2b)

Bi ¼ a4

Z 1

s

1

ZNþ1
RiðZÞdZþ b4 Rið1Þ �

1

sN
RiðsÞ

� �
ði ¼ 1; 2; 3; . . .Þ, (A.2c)

Y 1i ¼ �
b2
Ni

Z 1

s

I1ðxÞRixdx; Y 2i ¼ �
b2
Ni

Z 1

s

I2ðxÞRixdx, (A.3a)

Z1i ¼ �
b2
Ni

Z 1

s

L1ðxÞRixdx; Z2i ¼ �
b2
Ni

Z 1

s

L2ðxÞRixdx, (A.3b)

Vd1 ¼ b3 G1 þ
G2

sNþ1

� �
þ
X1
i¼1

AiY 2i þ

d ln s; N ¼ 0;

d
2N

1�
1

s2N

� �
; Na0;

8><
>: (A.4a)

Vb1 ¼ b4 G1 þ
G2

sNþ1

� �
þ
X1
i¼1

AiZ2i �

dg ln s; N ¼ 0;

dg

2N
1�

1

s2N

� �
; Na0;

8><
>: (A.4b)
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W d1i ¼
Ai

oi

ðY 1i � Y 2io2
i Þ, (A.4c)

W b1i ¼
Ai

oi

ðZ1i � Z2io2
i Þ, (A.4d)

Vd2 ¼ b3 H1 þ
H2

sNþ1

� �
þ
X1
i¼1

BiY 2i �

dg ln s; N ¼ 0;

dg

2N
1�

1

s2N

� �
; Na0;

8><
>: (A.5a)

Vb2 ¼ b4 H1 þ
H2

sNþ1

� �
þ
X1
i¼1

BiZ2i þ

d ln s; N ¼ 0;

d
2N

1�
1

s2N

� �
; Na0;

8><
>: (A.5b)

W d2i ¼
Bi

oi

ðY 1i � Y 2io2
i Þ, (A.5c)

W b2i ¼
Bi

oi

ðZ1i � Z2io2
i Þ, (A.5d)

a11 ¼ Vd1 þ
X1
i¼1

AiðA2i � Y 2iÞ; a12 ¼ Vb1 þ
X1
i¼1

AiðA3i � Z2iÞ, (A.6a)

a21 ¼ Vd2 þ
X1
i¼1

BiðA2i � Y 2iÞ; a22 ¼ Vb2 þ
X1
i¼1

BiðA3i � Z2iÞ, (A.6b)

b1 ¼ j1ð0Þ � j2ð0Þ � G1p1ð0Þ �
G2

sN
p2ð0Þ �

X1
i¼1

AiA1i, (A.6c)

b2 ¼ c1ð0Þ � c2ð0Þ �H1p1ð0Þ �
H2

sN
p2ð0Þ �

X1
i¼1

BiA1i, (A.6d)

d1 ¼ _j1ð0Þ � _j2ð0Þ � G1 _p1ð0Þ �
G2

sN
_p2ð0Þ �

X1
i¼1

AiA4i, (A.6e)

d2 ¼
_c1ð0Þ �

_c2ð0Þ �H1 _p1ð0Þ �
H2

sN
_p2ð0Þ �

X1
i¼1

BiA4i. (A.6f)
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